Amblyseius

Amblyseius swirskii, copyright Stephen Luk.

Belongs within: Phytoseioidea.

Amblyseius is a diverse genus of predatory mites, many species of which are significant in biological control of agricultural pests. In particular, a number of species have been found in association with the broad mite Polyphagotarsonemus latus, such as Amblyseius asiaticus, A. largoensis and A. tamatavensis on potato plants (Corpuz-Raros 2002). Amblyseius swirskii has been used commercially for controlling thrips and whiteflies on vegetable crops. Amblyseius coccosocius has received attention in India as a biological control agent for the tea spider mite Oligonychus coffeae. Amblyseius orientalis is known from a number of crop species in China as a control agent for spider mites (Wu & Lan 2001). The type species of the genus, A. obtusus, is cosmopolitan in distribution and found in grass sod.

Amblyseius may be distinguished from related genera by the presence of seta S4 posterolaterally on the dorsal shield, and the presence of macrosetae on genu III, leg IV and often other leg sections (Walter 1999). A number of species groups may be recognised, some of which may deverse recognition as separate genera; for instance, the heavily sclerotised Amblyseius cabonus group lacks setae J2 and may be more closely related to the genus Proprioseiopsis (Walter 1999).

Phytoseiids and the importance of taxonomy
Published 29 January 2016
Gupta’s (1975) original figures for Amblyseius syzygii.

For this week’s semi-random post, I drew the mite species Amblyseius syzygii. Or perhaps that should be Typhlodromips syzygii, as it’s more likely to be designated now. Typhlodromips syzygii is a member of the Phytoseiidae, a diverse family of about 1600 known species of predatory mite. Despite, or perhaps because of, their being an economically significant group (more on that in a bit), phytoseiids have been somewhat plagued by competing nomenclatural systems. Until relatively recently, they were predominately classified into just a few, very large genera. In the last couple of decades, however, there has been a move towards a much more finely divided classification, but you will still find many sources that will continue to use the more conservative system, particularly among those with more of an economic interest in the group than a taxonomic one.

It is as a result of this taxonomic changing of the guard that syzygii, once nestled in the broad genus Amblyseius, has been separated as part of a genus Typhlodromips that was placed by Chant & McMurtry (2005) in an entirely separate tribe from its former host. The genera are separated by features such as the number, shape and proportions of the dorsal setae, and the arrangement of macrosetae on the legs. In fact, counting setae seems to be a major part of taxonomy in the Mesostigmata (the major mite group to which the phyoseiids belong) as a whole, which is part of why this is one group of mites I’ve so far had difficulty in coming to terms with. Counting setae sounds like it should be easy, but in my experience it’s usually not. Especially when the animal is slide-mounted, requiring you to move to focus on the microscope up and down in order to see all the setae, leading to confusion about whether a given visible setae is one you’ve already counted or not.

Anywho, even after the split, T. syzygii is one of about sixty species in its genus. It was first described in 1975 from West Bengal, from a specimen collected on a jambul tree Syzygium cumini (Gupta 1975; hence the species name). Since then, it has been recorded all around southern and eastern Asia, and from a wide variety of different plants. Distinguishing features of the species include (again) proportions of the dorsal setae, with T. syzygii possessing features such as a pair of large posterolateral serrate setae, as well as details such as the shape of the ventral plates on the body.

A related amblyseiid, Amblyseius swirskii, attacking a thrips, copyright Steven Arthurs.

I referred before to the economic significance of phytoseiids. This is because a number of species in this family have been utilised as biocontrol agents for plant-feeding mites and other minute pests such as thrips. In some places, you can even buy commercially-produced satchels containing colonies of phytoseiids that can be hung in an orchard and allow the mites to disperse among your trees (arachnids in a bag, people, arachnids in a bag). Alternatively, industrial-size blowers may be used to fire clouds of mites across a crop. I have come across reference to Amblyseius syzygii as a predator of the tea red spider mite Oligonychus coffeae, a significant crop pest. The use of phytoseiids in pest control has, in turn, lead to a massive amount of research on phytoseiid distribution, prey preferences, and pesticide resistances (some phytoseiids can be applied in combination with pesticides that affect the target pest but not the phytoseiids). However, this has also required a lot of attention to phytoseiid taxonomy. For all that phytoseiid species may be obscenely difficult to distinguish, even closely related species may vary significantly in each of the aforementioned factors. For instance, Beard (1999) refers to a number of morphologically all-but-indistinguishable but behaviourally distinct species/populations/whatever that have been identified as the biocontrol ‘species’ Neoseiulus cucumeris. Some strains might be found only on low-growing plants and never on trees, others may be quite high above the ground. Some may cluster around the flowers of their host plants, others may prefer the fruits and/or young leaves. And they might differ in prey preferences: of two strains found in Britain, one would munch quite happily on the broad mite Polyphagotarsonemus latus, the other would refuse to touch it. Obviously, introducing the wrong strain in a pest control effort could lead to a lot of money being spent on a futile attempt.

In honour of Amblyseius
Published 12 March 2022

At this point in time, the Phytoseiidae are one of the most intensely studied families of mites. They are the only group of mesostigmatan mites to have significantly diversified among the foliar environment (on and around plant leaves) where they are mostly predators on other small invertebrates. The taxonomic history of phytoseiids is storied and complex but one taxon that has been consistently recognised as a major part of the family is the genus Amblyseius.

Swirski mite Amblyseius swirskii, from here.

When reviewed by Chant & McMurtry in 2004, Amblyseius was a sizeable assemblage of close to 350 known species (I quite expect that number to have expanded by now). Species of Amblyseius are lightly sclerotised, mostly pale in colour, and usually have a smooth shield covering most of the dorsum. The genus is characterised by the presence of eighteen or nineteen pairs of setae on the dorsum of the idiosoma (the central body) with three sublateral pairs being particularly long: one about the level of the third pair of legs (referred to as the s4 pair) and the other two towards the rear of the body. Except for a few pairs forward of the s4 setae, the remaining dorsal setae are all minute.

The primary focus of human interest in phytoseiids has been their role as predators of crop pests. I described some of the ways in which phytoseiids have been commercially utilised in an earlier post. Species used in this way include several Amblyseius though matters are complicated slightly by changes in taxonomy (for instance, one species which has been widely traded as Amblyseius cucumeris is now placed in the genus Neoseiulus). One of the most widely used of the commercial phytoseiids in recent years has been Amblyseius swirskii, commonly known as the Swirski mite (E. Swirski being an acarologist after whom the species was named). This species was first described in 1962 from almond trees in Israel and subsequently identified from a wide range of plant and crop species. Its history in pest control has been described in detail by Calvo et al. (2015).

The Swirski mite feeds on a range of prey, including mite, thrips and whitefly species, as well as on pollen and micro-fungi. It was first promoted as a commercial control for silverleaf whitefly Bemisia tabaci in the early 2000s. However, it did not get taken up in a big way until media publicity about pesticide residues on capsicum crops in Spain led to a crash in demand. Farmers in that country were forced to look for alternative means of pest control and found great success with A. swirskii (previous attempts to use the cooler-clime preferring Neoseiulus cucumeris in Spain had not been promising). Since then, the Swirski mite has been adopted in numerous countries for use on a range of crops to control various pests such as western flower thrips Frankliniella occidentalis. Because of its ability to grow and thrive on non-insect foods, including artificial diets, this mite is easily cultured commercially. It may also be released on crops before pest infestations develop, building up numbers on a diet of pollen until suitable prey presents itself. For the same reason, Swirski mite populations do not crash before pest control is complete. Overall, a remarkable success and a prime example of the value of Amblyseius species to mankind.

Systematics of Amblyseius

Characters (from Walter 1999): Dorsal shield setae S4 present, J2 usually present. Anteromedian dorsal shield setae j4, j5 and j6 short and simple, j6 shorter than or subequal to distance j6j6. Macrosetae present on genu III, leg IV and often other legs.

<==Amblyseius Berlese 1914H98
    |--*A. obtusus (Koch 1839)ET79 (see below for synonymy)
    |--A. aequidens Blommers 1974B74
    |--A. aerialis (Muma 1955) [=Amblyseiopsis aerialis]FH93
    |--A. agrestisC91
    |--A. ainuWL01
    |--A. alpinus Schweizer 1922 (see below for synonymy)S61
    |--A. alstoniaeG01
    |--A. americanus Garman 1948 [=A. (Amblyseiopsis) americanus]FH93
    |--A. andersoni (Chant 1957) [=Typhlodromus andersoni]FH93
    |--A. angeliquae Schicha 1987H98
    |--A. annaeMM85
    |--A. anomalus Van der Merwe 1968B74
    |--A. anthurii Schicha 1993H98
    |--A. anuwatiMM85
    |--A. aripoS99
    |--A. asiaticusWL01
    |--A. asperocervix McMurtry & Moraes 1985MM85
    |--A. australograminis Wainstein 1977H98
    |--A. banksiae McMurtry & Schicha 1987H98
    |--A. bay Schicha 1980H98
    |--A. bayviewensis Schicha 1977H98
    |--A. benjamini Schicha 1981H98
    |--A. bibens Blommers 1973B74
    |--A. borealis Chant & Hansell 1971FH93
    |--A. brevispinusW88
    |--A. cabonus Schicha & Elshafie 1980W99, H98 [=Proprioseiopsis cabonusH98]
    |--A. caloraiC-R02
    |--A. cangaro Schicha 1987H98
    |--A. carverae Schich 1993H98
    |--A. casimiri Schicha & Elshafie 1980H98
    |--A. cessator De Leon 1962 [incl. A. opertus Zack 1969]FH93
    |--A. channabasavannaiG01
    |--A. chilcotti Chant & Hansell 1971FH93
    |--A. chilenensisP91
    |--A. chorites Schuster & Pritchard 1963FH93
    |--A. christinae (Schicha 1981) [=Typhlodromus christinae; incl. A. brevisetosus Collyer 1982]H98
    |--A. cinctusMM85
    |--A. citrifoliusSS01
    |--A. coccineaeG01
    |--A. coccosociusSS01
    |--A. culmulus Van der Merwe 1968B74
    |--A. cupulus Denmark & Muma 1989FH93
    |--A. curiosus (Chant & Baker 1965) [=Iphiseius curiosus; incl. A. arenus Muma 1965]FH93
    |--A. dahonagnasC-R02
    |--A. darwinensis Schicha 1987H98
    |--A. decolor (Westerboer 1963)M96
    |--A. dieteri Schicha 1979H98
    |--A. dimidiatus De Leon 1962B74
    |--A. duncansoni Specht & Rasmy 1970FH93
    |--A. eharaiWL01
    |--A. endiandrae Schicha 1993H98
    |--A. fletcheri Schicha 1981H98
    |--A. fraterculus Berlese 1916FH93
    |--A. grandiductus McMurtry & Moraes 1985MM85
    |--A. guatemalensis (Chant 1959)B74
    |--A. guntheri McMurtry & Schicha 1987H98
    |--A. hainanensisWL01
    |--A. harrowi Collyer 1964H98
    |--A. heidrunae McMurtry & Schicha 1987H98
    |--A. helmi Schicha 1987H98
    |--A. herbicolus (Chant 1959)H98 (see below for synonymy)
    |--A. hibisciP91
    |--A. hovaMM85
    |--A. imbricatusWL01
    |--A. indicusAS96
    |--A. irregularisSO93
    |--A. italicusRCi91
    |--A. ivoloinae Blommers 1974B74
    |--A. japonicusMM85
    |--A. jugortus Athias-Henriot 1966Koe91
    |--A. keni Schicha 1987H98
    |--A. lailae Schicha 1979H98
    |--A. largoensis (Muma 1955)H98 (see below for synonymy)
    |--A. lenis Corpuz & Rimando 1966 [incl. A. sullivani Schicha & Elshafie 1980]H98
    |--A. lentiginosus Denmark & Schicha 1975H98
    |--A. limonicusRRA07
    |--A. longulus Berlese 1910S61
    |--A. loxtoni Schicha 1979H98
    |--A. maai Tseng 1976MM85
    |--A. makuwaWL01
    |--A. markwelli Schicha 1979H98
    |--A. masseeiZ91
    |--A. melaleucae McMurtry & Schicha 1987H98
    |--A. memorivagusRCT96
    |--A. meridionalis Berlese 1914 [=A. obtusus var. meridionalis; incl. Typhlodromus calicis Karg 1966]FH93
    |--A. mesembrinusSS01
    |--A. montdorensis Schicha 1979H98
    |--A. multidentatus (Chant 1959) [=Typhlodromus multidentatus]FH93
    |--A. multisetosus McMurtry & Moraes 1985MM85
    |--A. munsteriensisMM85
    |--A. muraleedharaniG01
    |--A. nambourensis Schicha 1981H98
    |--A. neolentiginosus Schicha 1979H98
    |--A. neomarkwelli Schicha 1980H98
    |--A. newsami (Evans 1953) [=Typhlodromus newsami]MM85
    |--A. nicholsiCK01
    |--A. nicola Chant & Hansell 1971FH93
    |--A. nonfraterculus Schicha 1987H98
    |--A. noosae McMurtry & Schicha 1987H98
    |--A. novaMM85
    |--A. oatmani Denmark 1974FH93
    |--A. obtuserellusMM85
    |--A. oguroiWL01
    |--A. okinawanus Ehara 1967MM85
    |--A. orientalis Ehara 1959FH93
    |--A. ornatusC91
    |--A. ovatusRRA07
    |--A. papuaensis McMurtry & Moraes 1985MM85
    |--A. parapeltatusWL01
    |--A. passiflorae Blommers 1974B74
    |--A. paucisetis Wainstein 1983FH93
    |--A. paucisetosus McMurtry & Moraes 1985MM85
    |--A. peltatus van der Merwe 1968H98
    |--A. phillipsi McMurtry & Schicha 1984H98
    |--A. potentillae (Garman 1958) [=Amblyseopsis potentillae]FH93
    |--A. pruniG01
    |--A. pseudolongispinosusWL01
    |--A. punctatus Muma in Muma, Metz & Farrier 1967FH93
    |--A. rademacheriZ91
    |--A. readshawi Schicha 1987H98
    |--A. reductusZ91
    |--A. reptans Blommers 1974B74
    |--A. reticulatus Oudemans 1930H98
    |--A. rhododendronisG01
    |--A. rusticanus [=Amblyseiella rusticana]TKC07
    |--A. salebrosusWL01
    |--A. schusteri (Chant 1959) [=Typhlodromus (Amblyseius) schusteri]FH93
    |--A. sellnicki (Karg 1960) [=Typhlodromus sellnicki]FH93
    |--A. semirregularisC-R02
    |--A. setatus Berlese 1916B16
    |--A. shi Pritchard & Baker 1962B74
    |--A. similisRCh91
    |--A. solusMM85
    |--A. stipulatusRCi91
    |--A. striatusWL01
    |--A. sturti Schicha 1980H98
    |--A. subtilisetosusZ91
    |--A. swirskiiSS01
    |--A. syzygii Gupta 1975MM85
    |--A. taiwanicusL86
    |--A. tamatavensis Blommers 1974H98
    |--A. tenuisKoh91
    |--A. tetranychivorusG01
    |--A. thwaitei Schicha 1977H98
    |--A. tibetasalicisWL01
    |--A. timagami Chant & Hansell 1971FH93
    |--A. tsugawaiWL01
    |--A. umbraticusR-CT01
    |--A. utriculus Karg 1989FH93
    |--A. vanderlindei Van der Merwe 1965 [incl. A. tareensis Schicha 1983]H98
    |--A. verrucosusRCT96
    |--A. vignusG01
    |--A. volcanus Prasad 1968FH93
    |--A. waltersi Schicha 1981H98
    |--A. wearnei Schicha 1987H98
    `--A. williamsi Schicha 1983H98

Amblyseius alpinus Schweizer 1922 [=Amblyseius obtusus var. alpinus, Amblygamasus alpinus; incl. Amblyseius alpinus var. murteri Schweizer 1961]S61

Amblyseius herbicolus (Chant 1959)H98 [=Typhlodromus (Amblyseius) herbicolusFH93; incl. A. amitae Bhattacharyya 1968FH93, A. deleoni Muma & Denmark 1970H98, A. impactus Chandhri 1968FH93]

Amblyseius largoensis (Muma 1955)H98 [=Amblyseiopsis largoensisH98, Typhlodromus largoensisH98; incl. Amblyseius neolargoensis Van der Merwe 1965B74]

*Amblyseius obtusus (Koch 1839)ET79 [=Zercon obtususFH93, Gamasus obtususCF77; incl. Amblyseius perlongisetus affatisetus Wainstein 1960FH93, Zercon furcatusCF77, A. microsetae Muma 1961FH93, Z. mucronatusCF77, A. rhabdus Denmark 1965FH93, A. obtusus var. tuscusS22]

*Type species of generic name indicated

References

[AS96] Arbabi, M., & J. Singh. 1996. The efficiency of eight phytoseiid mites (Phytoseiidae) as predators of Tetranychus cinnabarinus (Boisd.) (Tetranychidae). In: Mitchell, R., D. J. Horn, G. R. Needham & W. C. Welbourn (eds) Acarology IX vol. 1. Proceedings pp. 195–200. Ohio Biological Survey: Columbus (Ohio).

Beard, J. J. 1999. Taxonomy and biological control: Neoseiulus cucumeris (Acari: Phytoseiidae), a case study. Australian Journal of Entomology 38: 51–59.

[B16] Berlese, A. 1916. Centuria terza di Acari nuovi. Redia 12: 289–338.

[B74] Blommers, L. 1974. Species of the genus Amblyseius Berlese, 1914, from Tamatave, east Madagascar (Acarina: Phytoseiidae). Bulletin Zoologisch Museum Universiteit van Amsterdam 3 (19): 143–155.

Calvo, F. J., M. Knapp, Y. M. van Houten, H. Hoogerbrugge & J. E. Belda. 2015. Amblyseius swirskii: what made this predatory mite such a successful biocontrol agent? Experimental and Applied Acarology 65: 419–433.

[CF77] Canestrini, G., & F. Fanzago. 1877. Intorno agli Acari Italiani. Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti, Serie 5, 4: 69–208, pls 2–7.

Chant, D. A., & J. A. McMurtry. 2004. A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae): part III. The tribe Amblyseiini Wainstein, subtribe Amblyseiina n. subtribe. International Journal of Acarology 30 (3): 171–228.

Chant, D. A., &. J. A. McMurtry. 2005. A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae): part VII. Typhlodromipsini n. tribe. International Journal of Acarology 31 (4): 315–340.

[CK01] Charanasri, V., & M. Kongchuensin. 2001. Species and population densities of mites on jujube. In: Halliday, R. B., D. E. Walter, H. C. Proctor, R. A. Norton & M. J. Colloff (eds) Acarology: Proceedings of the 10th International Congress pp. 419–422. CSIRO Publishing: Melbourne.

[C91] Çobanoglu, S. 1991. The distribution of phytoseiid species (Acari: Phytoseiidae) in important apple growing areas of Turkey. In: Dusbábek, F., & V. Bukva (eds) Modern Acarology: Proceedings of the VIII International Congress of Acarology, held in České Budĕjovice, Czechoslovakia, 6–11 August 1990 vol. 1 pp. 565–570. SPB Academic Publishing: The Hague.

[C-R02] Corpuz-Raros, L. A. 2002. Philippine acarine biological control agents: status, bioecology and research prospects. Philippine Agricultural Scientist 85 (2): 137–154.

[FH93] Farrier, M. H., & M. K. Hennessey. 1993. Soil-inhabiting and free-living Mesostigmata (Acari-Parasitiformes) from North America: an annotated checklist with bibliography and index. North Carolina Agricultural Research Service, North Carolina State University, Technical Bulletin 302: i–xvi, 1–408.

Gupta, S. K. 1975. Mites of the genus Amblyseius (Acarina: Phytoseiidae) from India with descriptions of eight new species. International Journal of Acarology 1 (2): 26–45.

[G01] Gupta, S. K. 2001. A conspectus of natural enemies of phytophagous mites and mites as potential biocontrol agents of agricultural pests in India. In: Halliday, R. B., D. E. Walter, H. C. Proctor, R. A. Norton & M. J. Colloff (eds) Acarology: Proceedings of the 10th International Congress pp. 484–497. CSIRO Publishing: Melbourne.

[H98] Halliday, R. B. 1998. Mites of Australia: A checklist and bibliography. CSIRO Publishing: Collingwood.

[Koe91] Koehler, H. H. 1991. A five year study on the secondary succession of Gamasina on a ruderal site: the influence of recultivation. In: Dusbábek, F., & V. Bukva (eds) Modern Acarology: Proceedings of the VIII International Congress of Acarology, held in České Budĕjovice, Czechoslovakia, 6–11 August 1990 vol. 1 pp. 373–383. SPB Academic Publishing: The Hague.

[Koh91] Kohn, M. 1991. Influence of the refuse dump biotopes on ecology of some gamasoid mites and ticks. In: Dusbábek, F., & V. Bukva (eds) Modern Acarology: Proceedings of the VIII International Congress of Acarology, held in České Budĕjovice, Czechoslovakia, 6–11 August 1990 vol. 1 pp. 199–204. SPB Academic Publishing: The Hague.

[L86] Lindquist, E. E. 1986. The world genera of Tarsonemidae (Acari: Heterostigmata): a morphological, phylogenetic, and systematic revision, with a reclassification of family-group taxa in the Heterostigmata. Memoirs of the Entomological Society of Canada 118 (S136): 1–517.

[MM85] McMurtry, J. A., & G. J. de Moraes. 1985. Some phytoseiid mites (Acari) of Papua New Guinea, with descriptions of six new species. International Journal of Acarology 11 (2): 75–88.

[M96] Munderloh, E. 1996. Gamasina (Mesostigmata) in a dune transect at Spiekeroog (Germany, Lower Saxony). In: Mitchell, R., D. J. Horn, G. R. Needham & W. C. Welbourn (eds) Acarology IX vol. 1. Proceedings pp. 589–594. Ohio Biological Survey: Columbus (Ohio).

[P91] Petrushov, A. Z. 1991. Selection and mechanisms of ambush resistance in Metaseiulus occidentalis N. (Acarina: Phytoseiidae). In: Dusbábek, F., & V. Bukva (eds) Modern Acarology: Proceedings of the VIII International Congress of Acarology, held in České Budĕjovice, Czechoslovakia, 6–11 August 1990 vol. 2 pp. 741–748. SPB Academic Publishing: The Hague.

[RCh91] Ragusa Di Chiara, S. 1991. Using native phytoseiids in agricultural cropping systems. In: Dusbábek, F., & V. Bukva (eds) Modern Acarology: Proceedings of the VIII International Congress of Acarology, held in České Budĕjovice, Czechoslovakia, 6–11 August 1990 vol. 1 pp. 159–166. SPB Academic Publishing: The Hague.

[RCi91] Ragusa, S., & A. M. Ciulla. 1991. Phytoseiid mites associated with vines in Sicilian vineyards. In: Schuster, R., & P. W. Murphy (eds) The Acari: Reproduction, development and life-history strategies pp. 417–423. Chapman & Hall: London.

[RCT96] Ragusa Di Chiara, S., & H. Tsolakis. 1996. A. survey of phytoseiid mites (Phytoseiidae) associated with various plants in Sicily (Italy). In: Mitchell, R., D. J. Horn, G. R. Needham & W. C. Welbourn (eds) Acarology IX vol. 1. Proceedings pp. 253–256. Ohio Biological Survey: Columbus (Ohio).

[R-CT01] Ragusa-di Chiara, S., & H. Tsolakis. 2001. Phytoseiid faunas of natural and agricultural ecosystems in Sicily. In: Halliday, R. B., D. E. Walter, H. C. Proctor, R. A. Norton & M. J. Colloff (eds) Acarology: Proceedings of the 10th International Congress pp. 522–529. CSIRO Publishing: Melbourne.

[RRA07] Ramos, M., H. Rodríguez & L. Almaguel. 2007. Qualitative and quantitative description of predatory mite biodiversity in different agroecosystems in Cuba. In: Morales-Malacara, J. B., V. M. Behan-Pelletier, E. Ueckermann, T. M. Pérez, E. G. Estrada-Venegas & M. Badii (eds) Acarology XI: Proceedings of the International Congress pp. 463–469. Instituto de Biología and Faculdad de Ciencias, Universidad Nacional Autónoma de México, Sociedad Latinoamericana de Acarología: México.

[S99] Sabelis, M. W. 1999. Evolution of plant-predator mutualisms: an introduction to the symposium. In: Needham, G. R., R. Mitchell, D. J. Horn & W. C. Welbourn (eds) Acarology IX vol. 2. Symposia pp. 205–213. Ohio Biological Survey: Columbus (Ohio).

[SS01] Saha, K., A. K. Somchoudhury, P. K. Sarkar & S. K. Gupta. 2001. Effect of temperature on the rate of development, fecundity, longevity, sex ratio and mortality of Amblyseius coccosocius Ghai and Menon (Acari: Phytoseiidae), an important biocontrol agent against tea red spider mite in India. In: Halliday, R. B., D. E. Walter, H. C. Proctor, R. A. Norton & M. J. Colloff (eds) Acarology: Proceedings of the 10th International Congress pp. 470–472. CSIRO Publishing: Melbourne.

[SO93] Schicha, E., & D. J. O’Dowd. 1993. New Australian species of Phytoseiidae (Acarina) from leaf domatia. Journal of the Australian Entomological Society 32: 297–305.

[S22] Schweizer, J. 1922. Beitrag zur Kenntnis der terrestrischen Milbenfauna der Schweiz. Verhandl. Naturf. Ges. Basel 33: 23–112, 4 pls.

[S61] Schweizer, J. 1961. Die Landmilben der Schweiz (Mittelland, Jura und Alpen): Parasitiformes Reuter, mit 246 Arten und Varietäten und 268 meist kombinierten Originalzeichnungen. Denkschriften der Schweizerischen Naturforschenden Gesellschaft [Mémoires de la Société Helvétique des Sciences Naturelles] 84: i–vii, 1–207.

[TKC07] Tixier, M.-S., S. Kreiter & B. Cheval. 2007. Vineyard colonisation by predaceous mites (Acari: Phytoseiidae) living in surrounding vegetation. A three year study in the south of France. In: Morales-Malacara, J. B., V. M. Behan-Pelletier, E. Ueckermann, T. M. Pérez, E. G. Estrada-Venegas & M. Badii (eds) Acarology XI: Proceedings of the International Congress pp. 475–487. Instituto de Biología and Faculdad de Ciencias, Universidad Nacional Autónoma de México, Sociedad Latinoamericana de Acarología: México.

[W88] Walter, D. E. 1988. Nematophagy by soil arthropods from the shortgrass steppe, Chihuahuan desert and Rocky Mountains of the central United States. Agriculture, Ecosystems and Environment 24: 307–316.

[W99] Walter, D. E. 1999. Review of Australian Asperoseius Chant, Euseius Wainstein, Okiseius Ehara and Phytoscutus Muma (Acari: Mesostigmata: Phytoseiidae) with a key to the genera of Australian Amblyseiinae and descriptions of two new species. Australian Journal of Entomology 38: 85–95.

[WL01] Wu, W.-N., & W.-M. Lan. 2001. The phytoseiid mites of major crops in China. In: Halliday, R. B., D. E. Walter, H. C. Proctor, R. A. Norton & M. J. Colloff (eds) Acarology: Proceedings of the 10th International Congress pp. 530–532. CSIRO Publishing: Melbourne.

[Z91] Zacharda, M. 1991. Typhlodromus pyri Scheuten, 1857 (Acari: Phytoseiidae), a unique predator for biological control of phytophagous mites in Czechoslovakia. In: Dusbábek, F., & V. Bukva (eds) Modern Acarology: Proceedings of the VIII International Congress of Acarology, held in České Budĕjovice, Czechoslovakia, 6–11 August 1990 vol. 1 pp. 205–210. SPB Academic Publishing: The Hague.

Leave a comment

Your email address will not be published. Required fields are marked *