Acarinina acarinata, from here.

Belongs within: Globorotaliida.

The Globorotaliidae are a group of trochospiral, planktonic Foraminifera known from the Palaeocene to the present. In most genera, forming the subfamily Globorotaliinae, the test has a primary aperture only on the umbilical side. In the Lower to Middle Eocene genus Truncorotaloides, secondary sutural apertures are present on the spiral side in addition to the primary umbilical aperture (Loeblich & Tappan 1964b).

Globorotalia is a genus of planktonic forams known from the Palaeocene to the present (Loeblich & Tappan 1964b).

Floating forams
Published 31 May 2010
The planktic foraminiferan Globorotalia ungulata. Photo by Kenneth Finger.

The benthic vs planktonic division is generally treated as the basic starting point by foram workers. This is not because of any fundamental taxonomic distinction; benthic forams are considerably more diverse than planktonic species and, while past authors have treated planktonic forams as a single order Globigerinida, recent studies are often more consistent with a polyphyletic origin for planktonic lineages (Ujiié et al. 2008). It has even been shown that some individual foram species may alternative between benthic and planktonic stages (Darling et al. 2009). Planktonic forams also have much less history than benthic forams—whereas the earliest forams deep in the Palaeozoic were benthic, planktonic forms didn’t appear until the Triassic (and didn’t really become abundant until much later). However, the two groups do have very different ecologies and practical significance. While benthic species may be very localised, planktonic foram species are usually very widespread and abundant. About one-third of the world’s ocean floor is covered with “Globigerina ooze”, a thick deposit of the shells of dead planktonic forams. This great abundance and distribution, together with a high species turnover rate compared to benthic taxa, has made planktonic forams perhaps the most significant group of organisms of all for marine biostratigraphy.

Live specimen of Globorotalia menardii (Globorotaliidae; left) compared to Globigerinoides sacculifer (Globigerinidae; right). Photos by Colomban de Vargas.

The Globorotaliidae are a family of planktonic forams whose first definite appearance was in the Oligocene (de Vargas et al. 1997) assignations of earlier taxa to the globorotaliids are more contentious). Globorotaliids are distinguished from the other major family of planktonic forams, the Globigerinidae, by their different form (flattened rather than globular) and their smooth shell (globigerinids are spinose and honeycombed). While globigerinids feed on zooplankton as well as phytoplankton, globorotaliids are more specific feeders on phytoplankton. Ochrophyte endosymbionts have also been recorded in globorotaliids though the exact species involved does not appear to have been determined (Gastrich 1988).

External and X-ray view of Pulleniatina obliquiloculata to show the change in spiral direction during growth. Photos from e-Foram Stock.

Blow (1979) recognised two subfamilies in the Globorotaliidae, the Globorotaliinae and Pulleniatininae; other authors may recognise them as separate families. In both subfamilies, the initial growth form is trochospiral (chambers arranged like the whorls of a top shell). In Globorotaliinae, it remains so throughout the life span; in Pulleniatininae, the earlier trochospiral stage is followed by a later streptospiral stage (each individual chamber occupies half a whorl and grows over the earlier chambers).

Systematics of Globorotaliidae

Characters (from Loeblich & Tappan 1964): Test trochospiral; chambers ovate, spherical or angular; primary aperture interiomarginal, extraumbilical-umbilical, secondary sutural apertures may occur on spiral side.

Globorotaliidae [Globorotaliinae]
    |--Turborotalia Cushman & Bermúdez 1949LT64b
    |    `--*T. centralis (Cushman & Bermúdez 1937) [=Globorotalia centralis]LT64b
    |--Planorotalites Morozova 1957MO81, LT64b
    |    |--*P. pseudoscitula (Glaessner 1937) [=Globorotalia pseudoscitula]LT64b
    |    |--P. chapmani (Parr 1938) [=Globorotalia chapmani]MO81
    |    `--P. pseudomenardii (Bolli 1957) [=Globorotalia pseudomenardii, G. (Planorotalites) pseudomenardii]MO81
    |--Acarinina Subbotina 1953MO81
    |    |--*A. acarinata Subbotina 1953LT64b
    |    |--A. coalingensis (Cushman & Hanna 1927) (see below for synonymy)MO81
    |    |--A. densaP79
    |    |--A. mckannai (White 1928) [=Globigerina mckannai, Globorotalia (Acarinina) mckannai]MO81
    |    |--A. nitidaFJ05
    |    |--A. soldadoensis (Bronnimann 1952) [=Globigerina soldadoensis, Globorotalia (Acarinina) soldadoensis]MO81
    |    |--A. strabocellaM12
    |    |--A. whitei (Weiss 1955) [=Globorotalia whitei]MO81
    |    `--A. wilcoxensis (Cushman & Ponton 1932) [=Globorotalia wilcoxensis, Truncorotaloides (Morozovella) wilcoxensis]MO81
    `--Globorotalia Cushman 1927 (see below for synonymy)LT64b
         |  i. s.: G. acostaensisP79
         |         G. aragonensisP79
         |         G. canariensisC40
         |         G. continuosaP79
         |         G. crassaC40
         |         G. crassulaH90
         |         G. daubjergensisP79
         |         G. exilisBC79
         |         G. fimbriataC40
         |         G. formosaP79
         |         G. hirsuta (d’Orbigny 1839)A68
         |         G. ikebei Maiya, Saito & Sato 1976H03
         |         G. kugleriP79
         |         G. lehneriG92
         |         G. margaritaeP79
         |         G. mayeriLT64a
         |         G. membranacea (Ehrenberg 1854) [=Planulina membranacea, *Planorotalia membranacea]LT64b
         |         G. menardiiKS02 [=Pulvinulina menardiiLT64a]
         |         G. merotumidaP79
         |         G. michelinianaC40
         |         G. miocaenicaP79
         |         G. miotumidaH90
         |         G. miozeaS76
         |         G. multicamerataP79
         |         G. opimaP79
         |         G. orientalis Maiya, Saito & Sato 1976H03
         |         G. patagonicaC40
         |         G. peripheroacutaP79
         |         G. peripherorondaP79
         |         G. praefohsiP79
         |         G. praehirsutaH90
         |         G. praemenardiiH90 [=G. menardii f. praemenardiiQ72]
         |         G. pseudobulloidesP79
         |         G. pusillaP79
         |         G. scitulaLT64a
         |         G. siakensisKS02
         |         G. spiralisP79
         |         G. stellaria Turnovsky 1958 [=G. (*Astrorotalia) stellaria]LT64b
         |         G. tosaensisP79
         |           |--G. t. tosaensisP79
         |           `--G. t. tenuithecaP79
         |         G. truncatulinoides (d’Orbigny in Barker-Webb & Berthelot 1839) (see below for synonymy)LT64b
         |         G. uncinataP79
         |         G. zealandicaH90
         |--*G. (Globorotalia) tumida (Brady 1877) [=Pulvinulina menardii var. tumida]LT64b
         |    |--G. t. tumidaP79
         |    `--G. t. plesiotumidaP79
         |--G. (Fohsella) fohsiSK99
         `--G. (Globoconella) Bandy 1975SK99
              |--G. (G.) conoideaSK99
              `--+--G. (G.) conomiozeaSK99
                 |    |--G. c. conomiozeaSK96
                 |    `--‘Globoconella’ c. monsSK96
                 |--G. (G.) pliozeaSK99
                 `--+--G. (G.) sphaericomiozeaSK99
                    `--+--G. (G.) inflata (d’Orbigny 1839)SK99, A68
                       |    |--G. i. inflataH03
                       |    `--G. i. praeinflataH03
                       `--G. (G.) puncticulataSK99

Acarinina coalingensis (Cushman & Hanna 1927) [=Globigerina coalingensis; incl. Globoquadrina primitiva Finlay 1947, Globigerina primitiva, Pseudogloboquadrina primitiva]MO81

Globorotalia Cushman 1927 [incl. Astrorotalia Turnovsky 1958, Planorotalia Morozova 1957, Truncorotalia Cushman & Bermúdez 1949]LT64b

Globorotalia truncatulinoides (d’Orbigny in Barker-Webb & Berthelot 1839) [=Rotalina truncatulinoides, G. (*Truncorotalia) truncatulinoides]LT64b

*Type species of generic name indicated


[A68] Albani, A. D. 1968. Recent Foraminiferida of the central coast of New South Wales. AMSA Handbook 1: 1–37.

[BC79] Berggren, W. A., & J. A. Van Couvering. 1979. Quaternary. In: Robison, R. A., & C. Teichert (eds) Treatise on Invertebrate Paleontology pt A. Introduction. Fossilisation (Taphonomy), Biogeography and Biostratigraphy pp. A505–A543. The Geological Society of America, Inc.: Boulder (Colorado), and The University of Kansas: Lawrence (Kansas).

Blow, W. H. 1979. The Cainozoic Globigerinida: A study of the morphology, taxonomy, evolutionary relationships and the stratigraphical distribution of some Globigerinida (mostly Globigerinacea). E. J. Brill: Leiden.

[C40] Cushman, J. A. 1940. Foraminifera: Their classification and economic use 3rd ed. Harvard University Press: Cambridge (Massachusetts).

Darling, K. F., E. Thomas, S. A. Kasemann, H. A. Seears, C. W. Smart & C. M. Wade. 2009. Surviving mass extinction by bridging the benthic/planktic divide. Proceedings of the National Academy of Sciences of the USA 106 (31): 12629–12633.

[FJ05] Friedman, M., & G. D. Johnson. 2005. A new species of Mene (Perciformes: Menidae) from the Paleocene of South America, with notes on paleoenvironment and a brief review of menid fishes. Journal of Vertebrate Paleontology 25 (4): 770–783.

Gastrich, M. D. 1988. Ultrastructure of a new intracellular symbiotic alga found within planktonic foraminifera. Journal of Phycology 23 (4): 623–632.

[G92] Gingerich, P. D. 1992. Marine mammals (Cetacea and Sirenia) from the Eocene of Gebel Mokattam and Fayum, Egypt: stratigraphy, age, and paleoenvironments. University of Michigan Papers on Paleontology 30: i–ix, 1–84.

[H03] Hanagata, S. 2003. Miocene–Pliocene Foraminifera from the Niigata oil-fields region, northeastern Japan. Micropaleontology 49 (4): 293–340.

[H90] Hayward, B. W. 1990. Use of foraminiferal data in analysis of Taranaki Basin, New Zealand. Journal of Foraminiferal Research 20: 71–83.

[KS02] Kanjilal, S., & M. S. Srinivasan. 2002. New bivalves from the Miocene of Little Andaman Island, Bay of Bengal. Journal of the Geological Society of India 60: 527–536.

[LT64a] Loeblich, A. R., Jr & H. Tappan. 1964a. Sarcodina: chiefly “thecamoebians” and Foraminiferida. In: Moore, R. C. (ed.) Treatise on Invertebrate Paleontology pt C. Protista 2 vol. 1. The Geological Society of America and The University of Kansas Press.

[LT64b] Loeblich, A. R., Jr & H. Tappan. 1964b. Sarcodina: chiefly “thecamoebians” and Foraminiferida. In: Moore, R. C. (ed.) Treatise on Invertebrate Paleontology pt C. Protista 2 vol. 2. The Geological Society of America and The University of Kansas Press.

[MO81] Mancini, E. A., & G. E. Oliver. 1981. Planktic foraminifers from the Tuscahoma Sand (upper Paleocene) of southwest Alabama. Micropaleontology 27 (2): 204–225.

[M12] McGowran, B. 2012. Cenozoic environmental shifts and foraminiferal evolution. In: Talent, J. A. (ed.) Earth and Life: Global biodiversity, extinction intervals and biogeographic perturbations through time pp. 937–965. Springer.

[P79] Papp, A. 1979. Tertiary. In: Robison, R. A., & C. Teichert (eds) Treatise on Invertebrate Paleontology pt A. Introduction. Fossilisation (Taphonomy), Biogeography and Biostratigraphy pp. A488–A504. The Geological Society of America, Inc.: Boulder (Colorado), and The University of Kansas: Lawrence (Kansas).

[Q72] Quilty, P. G. 1972. The biostratigraphy of the Tasmanian marine Tertiary. Papers and Proceedings of the Royal Society of Tasmania 106: 25–44.

[SK96] Schneider, C. E., & J. P. Kennett. 1996. Isotopic evidence for interspecies habitat differences during evolution of the Neogene planktonic foraminiferal clade Globoconella. Paleobiology 22 (2): 282–303.

[SK99] Schneider, C. E., & J. P. Kennett. 1999. Segregation and speciation in the Neogene planktonic foraminiferal clade Globoconella. Paleobiology 25 (3): 383–395.

[S76] Scott, G. H. 1976. Foraminiferal biostratigraphy and evolutionary models. Systematic Zoology 25 (1): 78–80.

Ujiié, Y., K. Kimoto & J. Pawlowski. 2008. Molecular evidence for an independent origin of modern triserial planktonic foraminifera from benthic ancestors. Marine Micropaleontology 69 (3–4): 334–340.

Vargas, C. de, L. Zaninetti, H. Hilbrecht & J. Pawlowski. 1997. Phylogeny and rates of molecular evolution of planktonic foraminifera: SSU rDNA Sequences compared to the fossil record. Journal of Molecular Evolution 45 (3): 285–294.

Leave a comment

Your email address will not be published. Required fields are marked *