Rhodospirillales

Gluconacetobacter liquefaciens, from UC Davis.

Belongs within: Proteobacteria.

The Rhodospirillales are a clade of Gram-negative bacteria united by molecular analysis, many of which contain photosynthetic pigments.

The Rhodospirillales: it’s photosynthesis, but not as you know it
Published 20 August 2012
Colony of Rhodospirillum rubrum, from here.

For today’s post, I’m going to take a look at the Rhodospirillales. This is a clade within the larger bacterial group known as the Alphaproteobacteria, other members of which include the disease-causing rickettsiae (thought to be close relatives of the ancestors of eukaryote mitochondria) and the nitrogen-fixing bacteria found in legume nodules. Rhodospirillales species are commonly found in fresh water, though some significant species have been found in other habitats. Many (but far from all) species of Rhodospirillales contain a chlorophyll-like pigment called bacteriochlorophyll a that functions like chlorophyll in catalysing photosynthesis. They also often contain other photosynthetic pigments, carotenoids, that are red in colour: hence the common use of prefixes such as ‘rhodo-‘ and ‘roseo-‘ in genus names in this group. Most photosynthetic Rhodospirillales differ from plants in being photoheterotrophs rather than photoautotrophs: that is, they cannot use carbon dioxide alone as the source of carbon in photosynthesis, and require other carbon sources (Rhodospirillum can grow photoautotrophically if conditions are optimal). Rather than using water as an electron donor, photosynthetic Rhodospirillales generally use other donors such as sulfide or hydrogen.

Individual of Magnetospirillum magneticum, showing the row of magnetosomes, photographed by Richard B. Frankel.

The members of the Rhodospirillales are divided between two families, the Rhodospirillaceae and Acetobacteraceae (Garrity et al. 2005). The majority of members of the Rhodospirillaceae are spiral in shape and grow in anoxic or microaerobic conditions. Acetobacteraceae, in contrast, are most often coccus- or rod-shaped and aerobic. Non-photosynthetic members of Rhodospirillaceae include the nitrogen-fixing genus Azospirillum, often found living in the soil or in association with plants (though, unlike the more familiar nitrogen-fixing genus Rhizobium, Azospirillum is not found specifically in association with root nodules). Also noteworthy is the genus Magnetospirillum, specimens of which possess a row of magnetite-containing bodies called magnetosomes down one side of the cell. These magnetic bodies are presumed to aid the bacterium in navigation relative to the earth’s magnetic field. Magnetospirillum can be drawn from sediment through the use of a bar magnet; when observed under a microscope close to a magnet, they can be seen to swim parallel to the magnetic field lines. A cell suspension dropped onto a magnetic stirrer will be seen to flicker, as the cells change their direction of movement (and hence the direction of light scattering) to follow the spinning field.

Dividing cell of Stella vacuolata, from Garrity et al. (2005). Scale bar equals 1 µm.

Non-photosynthetic members of the Acetobacteraceae include the acetic acid bacteria (hence the name of the family). These gain energy by converting ethanol to acetic acid or, in more general terms, alcohol to vinegar. Some genera, such as Acetobacter and Acidomonas, are able to further oxidise the acetate produced to water and carbon dioxide; others, such as Gluconobacter, do not do so. One particularly distinctive genus in the Acetobacteraceae is Stella, species of which are found in soil and animal faecal matter. Cells of Stella are flat and, as suggested by their name, star-shaped with six points. Division of Stella involves the growth of a cross-wall down the midline of the cell, with each daughter cell retaining three of the parent’s points to which they add three new points.

Systematics of Rhodospirillales
<==Rhodospirillales
|--RhodospirillaceaeGH01
| |--Magnetospirillum gryphiswaldenseGH01, ALS95
| |--Rhodothalassium salexigens [=Rhodospirillum salexigens]H-RM03
| |--SkermanellaGH01
| |--Rhodocista Kawasaki, Hoshino et al. 1992GH01, H-RM03
| | `--R. centenaria [=Rhodospirillum centenum]I01
| |--Rhodospira Pfennig, Lünsdorf et al. 1997GH01, H-RM03
| | `--R. trueperiI01
| |--RhodospirillumI01
| | |--R. photometricumI01
| | `--R. rubrumI01
| |--RhodovibrioH-RM03
| | |--R. salinarum [=Rhodospirillum salinarum]H-RM03
| | `--R. sodomensisH-RM03 [=Rhodospirillum sodomenseI01]
| |--Phaeospirillum Imhoff, Petri & Süling 1998GH01, H-RM03
| | |--P. fulvum [=Rhodospirillum fulvum]I01
| | `--P. molischianum [=Rhodospirillum molischianum]I01
| |--Roseospira Imhoff, Petri & Süling 1998GH01, H-RM03
| | |--R. marina Guyonead, Mouné et al. 2003VP IJSEM03
| | |--R. mediosalina [=Rhodospirillum mediosalinum]I01
| | `--R. navarrensis Guyonead, Mouné et al. 2003VP IJSEM03
| `--AzospirillumGH01
| |--A. amazonenseE92
| |--A. brasilienseTG98
| |--A. halopraeferensZ92
| |--A. irakenseE92
| `--A. lipoferum [=Spirillum lipoferum]Z92
`--AcetobacteraceaeGH01
| i. s.: AcidocellaGH01
| Craurococcus roseusGH01, I01
| Paracraurococcus ruberGH01, I01
| Roseococcus thiosulfatophilusGH01, I01
| ZavarziniaGH01
|--+--Rhodopila globiformisLK02, I01 [=Rhodopseudomonas globiformisI01]
| `--AcidiphiliumLK02
| |--A. acidophilum [=Thiobacillus acidophilus]I01
| |--A. angustumI01
| |--A. cryptumI01
| |--A. multivorumI01
| |--A. organovorumI01
| `--A. rubrumI01
`--+--Acidomonas methanolicaLK02
|--+--Kozakia Lisdiyanti, Kawasaki et al. 2002LK02
| | `--*K. baliensis Lisdiyanti, Kawasaki et al. 2002LK02
| `--AsaiaLK02
| |--*A. bogorensisLK02
| `--A. siamensis Katsura et al. 2001JC08
|--+--Gluconobacter oxydansLK02
| `--AcetobacterLK02
| |--A. acetiIM01
| |--A. cibinongensis Lisdiyanti et al. 2002JC08
| |--A. diazotrophicusE92
| |--A. nitrocaptansE92
| |--A. orientalis Lisdiyanti et al. 2002JC08
| |--A. pasteurianusLK02
| `--A. syzygii Lisdiyanti et al. 2002JC08
`--GluconacetobacterLK02
|--+--G. diazotrophicusLK02
| `--+--G. liquefaciensLK02
| `--G. sacchariLK02
`--+--+--G. entaniiLK02
| `--G. hanseniiLK02
`--+--+--G. europaeusLK02 [=Acetobacter europaeusYK99]
| `--G. xylinusLK02 (see below for synonymy)
`--+--G. intermediusLK02
`--G. oboediensLK02

Nomen invalidum: Azospirillum doebereinerae Eckert et al. 2001JC08

Gluconacetobacter xylinusLK02 [=Bacterium xylinum Brown 1886T01, Acetobacter xylinus (Brown) Holland 1920VP T01, Acetobacter aceti ssp. xylinumT01, Acetobacterium xylinum (Brown) Ludwign 1898T01, Bacillus xylinus (Brown) Trevisan 1889T01, Ulvina xylina (Brown) Pribram 1933T01]

*Type species of generic name indicated

References

[ALS95] Amann, R. I., W. Ludwig & K.-H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59 (1): 143–169.

[E92] Eady, R. R. 1992. The dinitrogen-fixing bacteria. In: Balows, A., H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer (eds) The Prokaryotes: A handbook on the biology of bacteria: Ecophysiology, isolation, identification, applications 2nd ed. vol. 1 pp. 534–553. Springer-Verlag: New York.

Garrity, G. M., D. J. Brenner, N. R. Krieg & J. T. Staley. 2005. Bergey’s Manual of Systematic Bacteriology 2nd ed. vol. 2. The Proteobacteria pt C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer.

[GH01] Garrity, G. M., & J. G. Holt. 2001. The road map to the Manual. In: Boone, D. R., R. W. Castenholz & G. M. Garrity (eds) Bergey’s Manual of Systematic Bacteriology 2nd ed. vol. 1. The Archaea and the Deeply Branching and Phototrophic Bacteria pp. 119–166. Springer.

[H-RM03] Hirschler-Réa, A., R. Matheron, C. Riffaud, S. Mouné, C. Eatock, R. A. Herbert, J. C. Willison & P. Caumette. 2003. Isolation and characterization of spirilloid purple phototrophic bacteria forming red layers in microbial mats of Mediterranean salterns: description of Halorhodospira neutriphila sp. nov. and emendation of the genus Halorhodospira. International Journal of Systematic and Evolutionary Microbiology 53: 153–163.

[IJSEM03] IJSEM. 2003. Validation list no. 94: Validation of publication of new names and new combinations previously effectively published outside the IJSEM. International Journal of Systematic and Evolutionary Microbiology 53: 1701–1702.

[I01] Imhoff, J. F. 2001. The anoxygenic phototrophic purple bacteria. In: Boone, D. R., R. W. Castenholz & G. M. Garrity (eds) Bergey’s Manual of Systematic Bacteriology 2nd ed. vol. 1. The Archaea and the Deeply Branching and Phototrophic Bacteria pp. 631–637. Springer.

[IM01] Ivanova, E. P., & V. V. Mikhaylov. 2001. Novoe semejstvo Alteromonadaceae fam. nov., ob”edinâûŝee morskie proteobakterii rodov Alteromonas, Pseudoalteromonas, Idiomarina i Colwellia. Mikrobiologiya 70 (1): 15–23.

[JC08] Judicial Commission of the International Committee on Systematics of Prokaryotes. 2008. Status of strains that contravene Rules 27 (3) and 30 of the International Code of Nomenclature of Bacteria. Opinion 81. International Journal of Systematic and Evolutionary Microbiology 58: 1755–1763.

[LK02] Lisdiyanti, P., H. Kawasaki, Y. Widyastuti, S. Saono, T. Seki, Y. Yamada, T. Uchimura & K. Komagata. 2002. Kozakia baliensis gen. nov., sp. nov., a novel acetic acid bacterium in the α-proteobacteria. International Journal of Systematic and Evolutionary Microbiology 52: 813–818.

[TG98] Tepfer, D., A. Goldmann, N. Pamboukdjian, M. Maille, A. Lepingle, D. Chevalier, J. Dénarié & C. Rosenberg. 1988. A plasmid of Rhizobium meliloti 41 encodes catabolism of two compounds from root exudate of Calystegium sepium. Journal of Bacteriology 170 (3): 1153–1161.

[T01] Trüper, H. G. 2001. Etymology in nomenclature of procaryotes. In: Boone, D. R., R. W. Castenholz & G. M. Garrity (eds) Bergey’s Manual of Systematic Bacteriology 2nd ed. vol. 1. The Archaea and the Deeply Branching and Phototrophic Bacteria pp. 89–99. Springer.

[YK99] Yamada, Y., H. Kawasaki, Y. Nagatsuka, K. Mikata & T. Seki. 1999. The phylogeny of the cactophilic yeasts based on the 18S ribosomal RNA gene sequences: the proposals of Phaffomyces antillensis and Starmera caribaea, new combinations. Bioscience, Biotechnology, and Biochemistry 63: 827–832.

[Z92] Zumpft, W. G. 1992. The denitrifying prokaryotes. In: Balows, A., H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer (eds) The Prokaryotes: A handbook on the biology of bacteria: Ecophysiology, isolation, identification, applications 2nd ed. vol. 1 pp. 554–582. Springer-Verlag: New York.

Leave a comment

Your email address will not be published. Required fields are marked *